Short 40 meter Vertical with Tuned Spiral Counterpoise.

I took my 20 foot short 40 meter vertical and tried using a spiral tuned counterpoise instead of my 24  radials. The counterpoise is off the ground only about 5 feet so the antenna is still ground mounted.  Before I describe the details of the design. I want to discuss performance. With ground mounted radials I was getting a little over 50% efficiency. This is derived from a predicted feedpoint impedance of 18 ohms, but measured impedance being 31 ohms(13 ohms of losses). Using the spiral counterpoise; the feedpoint impedance is about 21 ohms – which implies >  80% efficiency. The only draw back is the tuning is a critical with about 6 inches difference between un-usable and perfectly aligned. As a practical approach, I made the spiral a little long and then I adjusted my coax ground connection point- to tune the antenna. I have made no effort to match perfectly to 50 ohms and the SWR is 2:1- over about 100 KHz. Tuning need only be adjusted when using a different portion of the band or moving physical position is some significant manner(placing lower to the ground for example). Regardless, there will only be about 6-8 inches of adjustment ever needed to tune the antenna. A  L network or broadband transformer may be desired, to match to 50 ohms. Adjusting the feed point up the antenna a little, should also work to get a better match. The counterpoise appears to work very well and I can recommend it as an alternative to radials. I am assuming the radiation pattern is the same but I have not evaluated this. Of course making contacts is not a  good measure of antenna performance but I have made  contacts using the antenna in this manner -so it certainly works. Based on my measurements, it has less loss using the spiral counterpoise vs ground radials.

Short Vertical  Tuned Antenna Impedance with Spiral counterpoise

20 ohm Z with almost 0 reactance (-1.6 deg)


Tuning the antenna element to resonance first (using a dinky ground plane…or a good one!) is prudent, because it is very tricky to simultaneously tuned the antenna and the counterpoise. Once the radiating element  is tuned correctly, tuning the counterpoise is  straightforward. I just a have an alligator clip to shift the ground connection point on the counterpoise.

Completed Counterpoise installed and tuned


Complete Antenna


The counterpoise is  a large square coil made on a 1/2 inch PVC frame. Four legs of 1/2 inch PVC (each leg is about 21 inches long) are connected by means of a four-way coupling which is pinned within a drilled 2 inch coupling. A piece of 1-1/4  inch PVC pipe is used to hold the fishing pole mast on the top and provide a means to mount on the ground. 2″ to 1- 1/4″ reducers are glued into the 2″ coupling. The entire coil is 5 and 3/4 turns spaced at 3 inches between turns. The turns start at 5 inches from the center. I measured  3 inch spacings on one leg and then did the same on the other three other legs. On the other legs however, I shifted the 3 inch point forward 3/4 of an inch on each leg with respect to the previous leg in the the winding order. This way the wire gradually shifts outward without abrupt turn hopping. I used #12 bare wire -you will need at least 40 feet of wire to make the coil.

four way PVC coupling and drilled 2 inch coupling

(the four way has to be trimmed 1/8″ on the ends to fit)


Coupling held in place with 1/2 inch stubs


1 1/4″ reducers are press fit and glued into the 2″ coupling


Efficient Portable Ground Mounted Vertical Antenna for 40 Meters

I like to work QRP CW and exclusively use  home brew portable equipment. I have struggled with the best antenna to use for 40 meters.  Wire antennas are lightweight and usually efficient but often require tuning, a structure or tree to install, and often end up low to the ground with poor DX performance. A 1/4 wave vertical is a good choice but is 33 feet long and requires lots of radials for acceptable efficiency.

What I came up  with is nothing new but I was able to verify good performance and efficiency.

I have constructed  a center loaded  20 foot vertical using a 20 foot collapsible fishing pole as the mast. The loading coil is wound with 12 gauge bare copper on  a couple of PVC 2 inch couplings joined together. The coil is about 12 uH in value. Final tweaking is accomplished by creating a tiny loop at the top of the antenna(2 inches of area) that can be varied in size(create a small amount of capacitive top loading). The radial system consists of 21 ten foot radials. Since they are short the footprint is small and setup is easy. Using more short radials is more efficient than using a few long ones(up to a point). Unless you are going to use 60 radials or more there is no reason to have them 1/4 wavelength long. This is because current density is greatest  at the feed point and diminishes as the radials extend out. Roughly, 24 radials at 1/10 wavelength long have the same performance as the same number of radials at 1/4 wavelength long.

From my measurements with a network analyzer, the resonant  feed point impedance is 30 ohms and calculated impedance with zero losses would be 18 ohms. So its on the high side of 50% efficient, which is good for a portable vertical.

I have made a couple of cross continent contacts with good results using 1 watt, so I am pleased with the ease of install, small footprint, portability and effective radiating.

Antenna stuck into my Yard

image (2)

Close up of the loading coil

image (3)

Short Radials at Base

image (1)

40 meter Direct Conversion QRP Transceiver using 74AC240 Power amp

This is my new qrp transceiver design. It uses the CS2000 clock generator circuit I use for a number of my receivers and a 74AC240 buffer as a push pull 1.5 watt final amplifier. The final unit uses my low power/low noise LCD display and is set to tune from 7.000 to 7.300 MHz.

If one changes the the output networks (L matching and half wave low pass) and simply adjusts the software for tuning range, one can use any band desired. The inductors are air wound or made using scraps of ferrite taken from junk box inductors. Tuning is accomplished by means of a cheap mechanical rotary encoder. The Micro-controller provides the control signals for T/R switching, generates a sidetone and shifts the frequency 700Hz on TX. The transceiver supports full break-in keying. The input to the receiver is isolated during TX by means of a BSS123 mosfet used as a switch. A 2N7000 will work here as well. The receiver uses a leftover inverter stage as a RF amp. It works surprisingly well and also provides the bias for the switching mixer input. There is a 2nd order op amp low pass filter for CW. The coupling capacitor C30 is normally not needed for receive, but when the TX is keyed, there is DC imbalance on the output of the mixer switches – the differential audio amp will slam to the rails creating large key clicks on the side tone. C31 is required for stability when keying, without it, occasional parasitic oscillations can develop.

The circuit could be easily modified to use a VXO or VFO. One would simply have to modify the keying logic(connect key directly to TXRX signal and invert this signal for MUTE connection) One can use the remaining two 74HC04 inverters to generate a side tone and the the logic.

Update: Changed the band to 30m for fun. The only hardware changes were: L1 & L2 (.11 uH), C21 (800pF), L3 (.6uH), C22 & C23 (270pF). The 74AC240 works beautifully at 10 MHz – outputting the same 1.5 watts and even running  a few percent more efficient. I must have nailed the matching network values.

Schematic(minor edit for key clicks 8/18/2015)


Unpopulated Home Brew board


Populated board


XCVR in Home Brew 3D printed Case



Video Demo

1.5 Watt 74HC240 QRP RF Amp using 74AC240 inverter for improved output

I am building a little QRP  rig for the 40 meter band , utilizing one of my DC receiver designs. I am using a CS2000 clk generator for the receiver and can use the clock output to drive a 1 watt or so RF amp for the TX. I am prototyping the transceiver now and will post that  design when it’s done. I designed a nice class E final at about two watts but it was tricky to test and tune…etc- so I thought I would come up with an amplifier that was easier to duplicate by other builders. This amplifier works well and is easy to build. It puts out in excess of one watt from a single  74AC240 (the 74HC240  will also work but not put out as quite as much power). You can also use a couple of 74AC04’s  also. The 240 is convenient however, because it has an enable pin for keying when using CW. The circuit uses two sets of four inverters driven by  a couple more inverters( to create differential inputs) and either a balanced L network(followed by a balanced to single ended combiner transformer) or  a LC tuned balun to match the output to a 50 ohm load. The schematic shows both methods and values for 7 Mhz. I have created a spreadsheet for calculating networks for any band desired. The inverters have very low impedance and so you need to match roughly 4 ohms at the inverters to 25 ohms for each side of the push pull sets. You need to heatsink the inverter IC’s! I used a  small heatsink for IC’s (seen on top of the 74AC240 TSSOP package) but you can use a piece of bent aluminum – or copper, etc. Because of the low Z, all of the matching inductors are small – so you can easily fabricate your own small  air wound coils or coils wrapped on scraps of ferrite from junk inductors- you don’t need to have specialized toroid cores.

The LC balun works well but was trickier to get adjusted (needed further matching by means of a L network). The simple “sortabalun” transformer  combiner in tandem with the balanced L network works  a little better and  is easier to design and  adjust. The only disadvantage is you need some sort of ferrite core material for the transformer – whereas the LC balun method can be all air inductors. If you have some ferrite material – use the transformer method. One could do impedance transformation with the transformer but the L matching provides filtering, can be easily adjusted for  parasitics in the inverters(capacitance) and  a 1:1 transformer is very easy to construct!

The only drawbacks of this design are, one; you can only use 5v up  8V max to power the amp and two; it is not very efficient (mine runs at about 40%- 45%). It can draw .4 amps @ 8V – which is quite a bit of heat! Having said that, it is fun to build and tolerant of mismatched SWR. Overall, not bad performance. If you used two of them (8×8 push pull) you would need to adjust down the L network inductors and increase the capacitor(this lowers the impedance at the inverters further). I expect you could get more than 2 watts.

Schematic Diagram(minor revision 07/29/2015) 


View of main amp using LC Balun


 Just over 1 Watt 2nd and 3rd harmonic down 37 dB with LC Balun

IMG_20150722_213704057 IMG_20150722_213722665

Over 1.5 watts with balanced L network and sortabalun!

Harmonics down more than 40 dB!

IMG_20150723_193630353 IMG_20150723_193652596

Link to network designer spreadsheet:

Software Defined Radio baseband processor based on FV-1 chip. NO COMPUTER required!

There is this great DSP processor chip  called an FV-1 which is a  dedicated audio dsp processor  sandwiched between stereo  24bit ADC’s and 24bit DACs. It can be treated as a black box analog part with audio in and audio out only. With a few discretes, a crystal, and an eeprom, you can  create a complete Software Defined Radio processor the size of a couple of postage stamps. The input should be I and Q baseband signals. I have also been able to demodulate AM by phase shifting the I signal at audio as the information is symmetric about the carrier. IMG_20150618_122603733

I have developed a complete radio design, including: the Quadrature DC receiver, and the baseband dsp processor. I have AM mode, LSB and USB. I have included bandwidth filtering for the different modes and dsp AGC limiting. I am very pleased with the performance.

The FV-1 is programmed with a free compiler provided by Spin semi…the manufacturer. The FV-1 requires an eeprom to hold the programs and you can store up 8 selectable program blocks and each can have a different program function(such as my AM, USB, LSB modes). FV-1 parts and the dev board can be purchased at:

The FV-1 uses a very cryptic assembly language to create digital filters and perform signal processing. The commands include multiple operations all at once, such as multiplications, additions and reading writing memory. Each command is a building block for different filter structures and operations. You can execute 128 instructions per a sample and because of the efficient command structure you can create most single order filters in two instructions. There are a number different approaches to making allpass filters. One approach only requires two instructions per a filter section and uses FV-1 delay memory. I chose to do a different filter architecture requiring more instructions and more memory. It works well but the two instruction method works fine also. The FV-1 is very well documented and there are numerous coding examples. With a little  effort, reading through all the documentation, one can get up and running with FV-1 development pretty quickly

Example AM  demodulator and USB demodulator code for the FV-1 (quadrature inputs)

AM_Demod  USB_Demod

I program the eeprom with my microchip pickit2 programmer or the FV-1 dev board. If you are going to explore algorithm design with the FV-1, I would recommend getting the FV-1 Dev board. Below is the source code and hex file for my design such that one can just program the eeprom and use what I have done, as is.  Once loaded on the eeprom, the three modes AM, USB and LSB are selected by pulling to ground: Sel1, Sel2 and sel3 respectively. This code is intended for quadrature inputs to the left and right input channels and the output is on the right channel out (the schematic below combines outputs of the left and right DAC so you should probably load the output into the left DAC as well).

Link To FV-1 Hex file:

DSP processor Schematic(minor update to TDA7052AT 07/01/15)

dsp radio baseband

Basic Quadrature Direct Conversion radio

This is a variation of my last sampling receiver (link below)


allpass filter Calculator for IIR digital filter coefficients

allpass digital calculator

Quick Demo of USB..LSB…and then AM

Demo of AM from I signal only(no quadrature)

Code for AM demodulator with single signal input, (uses two instruction allpass filter structure)

AM_no IQ

As Seen On TV Crunchy Boost ….. a simple overdrive that sounds great

as seen on tv pedal

My Zombie Screamer is really good for heavier overdrive sounds but I wanted to design a simple overdrive that had a wide range tonal control(treble boost and cut), that could be used as a simple clean boost…through light overdrive….. all the way to heavier distortion. It uses junk-box type parts and is easy to get up and running. The only part that is a little unusual is the 5k tone control pot. I say this because ideally, it would have an anti-log taper. A linear pot will work fine. I like the sound and it can be tweaked in a number of  interesting ways. Decreasing R3- will increase your max overdrive level, you can go to just two diodes instead of two sets of series diodes for clipping, R10 can be made larger( softer clipping) or smaller(harsher clipping).  The tone control can be modded also. You can swap the pot connections to C6 and R8(wiper will now go to C6 and the high side connection will go to R8). This changes the curve some. Another option is to tie C6 to the top of R8 and then connect c9(you may want to adjust this value) through the tone pot(as a variable resistor). This only gives treble cut but the overall gain is higher giving more intense distortion.


as seen on tv2

Alternate Schematic

(more drive for low output single coil pickups)

as seen on tv3

Yet another version which is hybrid FET/Transistor

(best range of overdrive)

as seen on tv4

Surface Mount Circuit Board:



Yet another Variant of the Junk Box Regen – this one is really weird but is an excellent performer

In this version, I removed the darlington detector and added a emitter follower(Q3) to bias Q1 and act as a reflex detector. With this arrangement the circuit works best with a supply voltage from one to two volts or so. I used three diode drops in series to achieve this. You could also use a LED.  It has extremely smooth regeneration. The selectivity is excellent.

Again I got it to work with a wide range of values, so it should be easy to reproduce. I hope someone builds this and gives me their opinion on performance.

Schematic (revised 07/01/2015)

2222A regen_rev3

Variation on Junk Box Bipolar Regenerative Receiver

This version removes the direct coupling of Q2 in the previous version and increases the emitter resistor as well, finally the regeneration control is moved to the emitter circuit. The result is little better performance with less loading of the tank and less detuning caused  by  regeneration adjustment. Probably other optimizations possible also. I tried to make this thing not work…and it was difficult requiring extreme deviation from shown component values. It should be very easy to get this thing up and running with all sorts of tank circuits. It works well with a broad range of supply voltages also the values for R7, R8, R9, and R10 have a wide range of functional values. So one probably wants to start with my values and then tweak for best performance, once the circuit is up and running.

Schematic Diagram(modified TDA7052at circuit 07/01/2015)

2222A regen_rev2

An unusual Regenerative receiver circuit using only bipolar transistors

This design uses junk box 2N2222A or 2n3904 transistors. Its easy to build and offers excellent performance. Here is a preliminary schematic. It works well but I am still tweaking it. Look for revisions to follow.

A few quick notes:

It only uses bipolar transistors, and the antenna signal can be injected such that it is  isolated from the tank or directly to the tank through a small cap. The circuit can use a series resonant Clapp type topology or parallel tank. The clapp version reduces the effect of parasitics and provides very stable tuning. It also works really well with varactor tuning as the voltage  swing across the varactor is low. The series tank requires larger inductors for a given frequency then a traditional parallel tank. I am using 20uH(two crappy tiny molded inductors) and a 300pf variable to get in the 5-8Mhz range. You don’t need any tapped coils or tickler…etc – just about any inductor should work.

The parallel tank version  gives more tuning range for a given tank circuit. It may be a better topology..its hard to tell. You get more tuning range for small tuning caps and the the inductor will be smaller. You also eliminate the collector resistor which surely adds phase noise to the clapp version, when oscillating.

Depending on the tank coil you use and/or if you use a different supply voltage, you may need or want to adjust some of the resistor values. These are noted on the schematic. On the bright side, I have use wide range of values for most of these components and the circuit has still worked. It’s all about maximizing gain while still maintaining smooth regeneration.

The darlington detector is a bipolar version of a “plate detector” where the the darlington is biased just at cusp of being turned on. It acts like a halfwave detector but with high Z and significant gain. You could use a FET but I thought it would be fun to only use junk-box type transistors. I am using 100k and 47k biasing resistors for the detector. The ratio is what matters so 1meg and 470k will work fine also.

In the schematic, I show the detector connected to L1 and C4 which make up the tank circuit for tuning. I also show a Q multiplier circuit separately which connects via the “QOut” signal to the tank circuit also. Its just another way to conceptualize a regenerative radio.

The transition from oscillation  is very smooth. Sensitivity is excellent. The circuit is simple.

Schematic Diagram(modified TDA7052at circuit 07/01/2015)

2222A regen

Video demo showing smooth regeneration transition on a scope