Ultra Simple 8 pole Low Pass CW filter

I wanted to add more audio filtering to my 40 meter CW transceiver https://circuitsaladdotcom.files.wordpress.com/2015/08/qrpxcvr2.jpg  but didn’t want to put much effort into it, so I used a MAX7401, 8 pole switch cap filter IC. This IC requires just a few discretes and has an extremely low passband ripple and group delay, as it is a Bessel configuration. I have used this IC before in some of my guitar effects pedals. It has worked very well in my other designs. The knee of the filter is adjustable via a capacitor(C4). To integrate into my receiver, I simply connected the input and output of the filter across the input capacitor(C27 removed) connections to the final audio amp. It may be desirable to put a single RC low pass filter stage in series with the output of the switch cap filter to remove clk artifacts on the output.(clk is 100X greater than the roll off frequency). Performance is very good with clear tone and no ringing.

Below, I have a video demo of the XCVR utilizing the filter. This version of the XCVR is tuned via a POT connected to the microcontroller A2D converter instead of a rotary encoder. It also has a push button to shift in 5Khz increments. When the button is depressed for longer, the frequency in KHz is sounded in morse code. Only the KHz is sounded, so for 7.100 Mhz for example, only 100 is sounded in morse code. In the video you can also see my cool 3D printed Code Key. It uses rare earth magnets instead of a spring for key action. It’s a really delightful bug.

Picture of filter Daughter Board connected to XCVR


Filter Schematic

Simple CW filter

Video of XCVR using the Filter

As Seen On TV Crunchy Boost ….. a simple overdrive that sounds great

as seen on tv pedal

My Zombie Screamer is really good for heavier overdrive sounds but I wanted to design a simple overdrive that had a wide range tonal control(treble boost and cut), that could be used as a simple clean boost…through light overdrive….. all the way to heavier distortion. It uses junk-box type parts and is easy to get up and running. The only part that is a little unusual is the 5k tone control pot. I say this because ideally, it would have an anti-log taper. A linear pot will work fine. I like the sound and it can be tweaked in a number of  interesting ways. Decreasing R3- will increase your max overdrive level, you can go to just two diodes instead of two sets of series diodes for clipping, R10 can be made larger( softer clipping) or smaller(harsher clipping).  The tone control can be modded also. You can swap the pot connections to C6 and R8(wiper will now go to C6 and the high side connection will go to R8). This changes the curve some. Another option is to tie C6 to the top of R8 and then connect c9(you may want to adjust this value) through the tone pot(as a variable resistor). This only gives treble cut but the overall gain is higher giving more intense distortion.


as seen on tv2

Alternate Schematic

(more drive for low output single coil pickups)

as seen on tv3

Yet another version which is hybrid FET/Transistor

(best range of overdrive)

as seen on tv4

Surface Mount Circuit Board:



PWM Phaser using PIC DDS LFO and 74HC4066 analog switches as synthetic resistors

I finally got this thing working well. I am using a TL5001 PWM chip  at 48 Khz to pulse width modulate analog switches in series with 10k resistors. The average resistance seen by the all pass filter circuits is proportional to the on time of the switches. For example is the switches are only on half the time, the average resistance is 20k instead of 10k. The advantages of this approach are that there are no critical adjustments, good dynamic range, and extremely linear resistance change in proportion to control voltage. The current draw is 25mA or so…not great but better than the 50mA I started with. The LFO is a DDS sine generator using a PIC micro controller. I will include a link to the code and a working hex file. I only use a sine wave output but the code can easily be modified to support numerous wave forms and frequency ranges. The  code for this project has been modified in two ways from the DDS code described in my other blog entries. I lowered the internal clock frequency to 8 MHz from 32Mhz(saves current) and reduced the output swing of the sine wave so it did not drive the PWM chip beyond 90% duty cycle.  Originally I just use the PWM directly from the PIC with no filtering but found this created noise artifacts, so I filter the output and drive a PWM chip. Typically, phaser circuits like this use high pass filter structures at the positive input, I chose to use low pass to help eliminate the switching noise from being introduced into the output. This worked well and eliminated the need for extensive filtering. The output is very clean

One thing that is very cool about this design is that it has variable sweep range instead of depth control. So the frequency range of sweep of the phasing notches can be adjusted starting at 100Hz or so all the way up to 5KHz.


pwm phaser



Link to code: https://www.adrive.com/public/mWSkFb/PWM%20phaser.zip

New phaser with Homebrew 1×4 Vactrol and DDS LFO

I decided that I  should build a Phaser using my PIC DDS LFO. I designed a PWM version using CD4066 analog switches but this had issues. It just drew to much current and had some noise artifacts. I got it working but it became more complicated  than I liked. However, the design was easily modified to use a homemade vactrol. The vactrol uses four photcells glued together to make a square and then the LED is glued right in the center. The whole thing is then covered in a piece of heat shrink, electric tape or whatever.  Performance is excellent and the circuit is simple. Of course the DDS can be replaced by some other conventional LFO circuit. The main issue is operating the LDR’s in a good range to get even and adjustable notch sweep. With this design, the sweep is adjustable and you can even eliminate one notch by pushing its position sub audio. The sweep controls the level of illumination of the LDR’s and thereby adjusting the total range of phase shift. The LFO uses my PIC DDS circuit and generates a Sine wave envelope. The code can easily be changed to generate other wave forms. I am going to include a link to the a zip file containing all of my source code. This was all compiled using MikroC. The program is small enough to compile in the freeware version of MikroC or you can just use my compiled hex file.

More detail on the PIC DDS is available on this blog in earlier post.

Link to source code and  hex file:  http://www.filedropper.com/ldrphaserdds

Completed Phaser:



LDR phaser

Etched Circuit Board:

etched phaser brd

Completed Board:

phaser board

Homebrew Vactrol:

quad vactrol

The Kool-Verb

This is a simple but nice sounding reverb based on the FV-1 dsp chip. Lots of low pass filtering gives a nice washy sound. You can adjust from a small room to a large hall.  The unit provides about a 75/25(dry) max reverb. Anything more than that is useless. Check out the stomp amp demo for how it sounds…same reverb, but just with just one fixed room setting.

The switch mode power supply keeps the current down to 30mA so you can use a battery if desired. You can use a linear regulator and it will work great, but then the current consumption doubles.

The schematic:


built into a 1590b case:

kool verb


The PWM Squeazal revisited

I have enjoyed my PW modulated compressor and decided to make a feedback(the original was feed forward) version with improved attack and shorter decay response. The result is excellent – I love this version. I use a Zetex current monitor IC as a full wave rectifier and this lets me really speed up the attack. So the response is super fast, very low noise, very low distortion, and very large dynamic range.


SchematicPWM COMP1_2_4

Link to design files:


The Stomp Amp- A Battery Powered 25 watt Stomp Box Amp

This is an idea I have had for a long time and I finally designed one. The results are excellent. The amp uses a surface mount car stereo  power amp IC and can produce 25 to 30 watts with a 16V-18V supply into a 4 ohm speaker. The circuit fits in a 1590bb enclosure and has Reverb, Bass, Treble and Gain controls. The tonal response is tailored for guitar in the OP amp stages, along with the James/Baxandall tone stack. The James/Baxandall is a versatile choice because it provides boost and cut. I find it a better choice then the “beef stew” fender tone stacks. Reverb is provided by means of an FV1 DSP IC. It can be omitted easily if desired. The Power amp IC is bonded to the case to provide heat sinking when it is cranked up. I used a piece of  1/2 inch copper pipe -reshaped to be the heat sink. As I have done with some of my earlier amplifiers, I have employed negative feedback from the speaker back to a discrete stage driving the final amplifier. This is a common practice in tube amps to flatten the tonal response of the output transformers and so it is unconventional to apply it here. I find it affects the over all sound in a pleasing manner. The amount of feedback is small and could be increased or removed (this will affect the bias of the JFET Q3) All of the signal chains are low impedance (except the input) and gain distribution is such that the amplifier is very low noise.  The amp powers up when the input is plugged in. The output is not ground referenced so the output jack is isolated from the case -(which is grounded via the heat sink). All you need is a tool battery or 12-18V power supply and a speaker cabinet and you can blast away. The mosfets used for polarity protection and power switching are just high current PMOS devices and not special – lots of other devices will work here. The op amp is a low noise type with a wide supply voltage range – others will work here also.

Things to consider when building:

The amp IC  I used was a surface mount version – and I flipped it upside so I could bond a heat sink to the ground. there is also a leaded version available

Decoupling is critical – especially for power amp – the double decoupling caps on the schematic are one set at each of two VCC pins on the power amp

Capacitors C3 and C11 weight the amplifier to tonally for guitar – these can be changed making both 10uF for example will work fine. If you want to use a Bass guitar make C3 at least 4.7 uF

The passive tone stack was chosen to attenuate gain so that the FV-1 would not be overloaded.  Other tone stacks can be substituted just keep this in mind if you use the FV-1


The Stomp Amp along with some other pedal designs of mine




Schematic Diagram